

# Many Model Forecasting in Real-Time



Anastasia Prokaieva 13 May 2024

DATA<sup>+</sup>AI SUMMIT

# Meet your Speaker

## Let's connect!

### Anastasia Prokaieva

- Specialist Architect Al and GeoSpatial
- Databricks since 2021, Global SME on Al and product champion on Model Serving
- Background in Physics & Applied Mathematics
- Book co-Author
  - "Databricks ML in Action" by Packt



## **Problem Statement**

**Time Series Forecasting** 



# **Types of Forecasting Algorithms**

## **Local Models**

Predicting individual time series separately. Each model is trained and applied to a specific time series, making it suitable for forecasting at a granular level, such as product-level sales forecasting in a large enterprise.



#akes only one time series at a time

## **Global Models**

Consider multiple time series collectively. They forecast across a broader set of data. Global models are useful for capturing complex dependencies between different time series, making them valuable for broader, cross-entity forecasting tasks.





Learns parameters for multiple time series

# **Types of Forecasting Algorithms**

### Local Models

Predicting individual time series separately. Each model is trained and applied to a specific time series, making it suitable for forecasting at a granular level, such as product-level sales forecasting in a large enterprise. Our Focus today

#akes only one time series at a time

## **Global Models**

Consider multiple time series collectively. They forecast across a broader set of data. Global models are useful for capturing complex dependencies between different time series, making them valuable for broader, cross-entity forecasting tasks.



Learns parameters for multiple time series

## Let's talk business first

## Our use case

Retailer that operates hundreds of thousands stores and want to bring operational forecasting of sales across all stores with all the available data in real-time taking into account metadata available.

### Key problems today:

- Training takes weeks
- Problems on joining freshly arriving features (weather, promos, marketing campaigns etc.)
- Data volumes are hard to maintain
- Requires to deliver updated forecasts per demand
- Would like to standardize on MLOps



# Your Final Architecture(one of many)



# Your Final Architecture FS (zoom in)

#### A. Model Serving with Online store for Feature LookUp & all models are inside a container

#### model input **Databricks Online Tables** model input Create the feature table **Databricks Online Tables** Create the feature table Is this user likely to buy Automatically sync with your Delta Is this user likely to buy Automatically sync with your Delta Transform features & save them to this destination? Transform features & save them to this destination? Table content the Feature Store Table content the Feature Store store id store\_id date date sales fs sales\_fs store\_id store\_id a ବ date date sales fs online sales\_fs\_online promo Model serving endpoint promo Model serving endpoint Forecasting Sales per StoreID Forecasting Sales per StorelD shool\_hollidays shool\_hollidays with Models via FS LookUp with Models via Artifact weather\_fs weather\_fs forecast store\_id forecast store id weather\_fs\_online weather fs online date date store id store\_id mean\_temperature mean\_temperature date date sales\_pred sales pred Lookup features using Lookup features using online tables online tables ms response time with K/V ms response time with K/V models\_fs backend backend store id training\_time ts\_ke models\_fs\_online C. Model Serving with Online store for Feature encoded\_model LookUp & all models are inside Online Store

8

B. Model Serving with Online store for Feature

& MODELS LookUp

## Part 1.a Creating a FS Training Dataset

ALTER TABLE \${catalog}.\${schema}.sales\_model\_table\_v2 ALTER COLUMN Store SET NOT NULL; ALTER TABLE \${catalog}.\${schema}.sales\_model\_table\_v2 ADD CONSTRAINT sales\_model\_table\_v2\_pk PRIMARY KEY(Store);



## Part 1.b Publish Features to Online Store



## Part 2.a Training our models on scale

1) Make sure to return the same type as the provided schema - otherwise will cause a type problem.

2) **applyInPandas** will apply your function to the grouped data, the function gets a pdDF as input.



| d | ef | fit_final_model_udf(df_pandas: pd.DataFrame) -> pd.DataFrame:                                                                                                                                                                                                                                    |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |    | <pre>import prophet as Prophet model = ForecastingModelProphet()</pre>                                                                                                                                                                                                                           |
|   |    | <pre>X = df_pandas[["Store", "Date", "Sales", "SchoolHoliday", "Promo", "Mean_TemperatureC"]] y = df_pandas.loc[:, ["Sales"]] # Optional!</pre>                                                                                                                                                  |
|   |    | <pre>with mlflow.start_run(run_id=run_id, experiment_id=experiment_id) as outer_run:<br/>with mlflow.start_run(run_name=f"store_{store}", nested=True, experiment_id=experiment_id ) as run:<br/>model.fit(X)<br/>mlflow.pyfunc.log_model(artifact_path=artifact_name,python_model=model,)</pre> |
|   | Ļ  | <pre>model_encoder = str(urlsafe_b64encode(pickle.dumps(model)).decode("utf-8")) return pd.Datarrame([[store, artifact_uri, [model_encoderj]], columns = ["store", "model_path", "encoded_model"</pre>                                                                                           |

1) Make sure to pass a class otherwise Spark does not serialise this properly.

2) Log your models, parameters, errors into MLFlow with a nested run.

3) We serialise our object into a str and return array of strings!

## Part 3.a Wrap your model with Artifact

Table 🗸 +

New result table: ON 🗸 🛛 🖓

|   | <sub>A<sup>B</sup>C</sub> Store | a <sup>B</sup> <sub>C</sub> encoded_model                                                        | 🛱 training_date |
|---|---------------------------------|--------------------------------------------------------------------------------------------------|-----------------|
| 1 | 1024                            | > gASVmy0BAAAAAACMDXdyYXBwZXJfbW9kZWyUjBdGb3JIY2FzdGluZ01vZGVsUHJvcGhldJSTlCmBlH2UKlwNbWFpbl9mZW | 2024-05-27      |
| 2 | 179                             | > gASVmy0BAAAAAACMDXdyYXBwZXJfbW9kZWyUjBdGb3JIY2FzdGluZ01vZGVsUHJvcGhldJSTICmBlH2UKlwNbWFpbl9mZW | 2024-05-27      |
| 3 | 409                             | > gASVmy0BAAAAAACMDXdyYXBwZXJfbW9kZWyUjBdGb3JIY2FzdGluZ01vZGVsUHJvcGhldJSTlCmBlH2UKlwNbWFpbl9mZW | 2024-05-27      |

```
class MultiModelPyfunc(mlflow.pyfunc.PythonModel):
    def __init__(self, model_list = []):
```

```
self.model_list = model_list
```

```
def load_context(self, context):
```

```
model_list = pd.DataFrame.from_records(
    mlflow.artifacts.load_dict(context.artifacts['model_list'])
```

self.model\_list = model\_list.set\_index('Store')

```
def predict(self, context, model_input): --
```

ie.log\_model(
 artifact\_path = "model",
 model = MultiModelPyfunc(),
 flavor= mlflow.pyfunc,
 pip requirements= reas.
 artifacts= artifacts,
 training\_set=training\_set,
 registered\_model\_name=model\_name,
 code\_path = ['wrapper\_model.py']

## Part 3.b Wrap your model with Online Store



DAG behind the scene is attached to the metadata of FS. When you evoke the model on batch/serving the features will be "looked" and joined to the dataset on PK.



## Part 4 Serving our models on scale

#### v 🗌 ap

- > 🖯 default
- > Tables (10)
- Volumes (1)

🖾 dais\_ts

Functions (1)

Sales\_models\_table\_feature\_spec

Models (7)

S model\_wrapper\_serving

- S model\_wrapper\_serving\_fsa
- S model\_wrapper\_serving\_fsm
- S model\_wrapper\_serving\_mt
- all 3 models can be queried using same schema
- you can pass data, and it will be replaced

| Catalogs → ap → forecast →<br>\$\$ model_wrapper_serving_fsm ☆ |                     |                     |      |             |                          |         |  |  |  |
|----------------------------------------------------------------|---------------------|---------------------|------|-------------|--------------------------|---------|--|--|--|
| Overview                                                       | Details Permissions |                     |      |             |                          |         |  |  |  |
| Description:                                                   | Add description     |                     |      |             |                          | ٢       |  |  |  |
| Versions                                                       |                     |                     |      |             |                          |         |  |  |  |
| Status                                                         | Version             | Time registered     | Tags | Aliases (i) | Registered by            | Comment |  |  |  |
| $\odot$                                                        | Version 3           | 2024-06-05 14:56:22 | Ð    | æ           | anastasia.prokaieva@dat  | ₽       |  |  |  |
| $\odot$                                                        | Version 2           | 2024-06-05 09:23:52 | ¢    | æ           | anastasia.prokaiev @dat  | €       |  |  |  |
| $\odot$                                                        | Version 1           | 2024-06-04 20:14:36 | Ð    | œ           | anastasia.pr. kaieva@dat | €       |  |  |  |
|                                                                |                     |                     |      |             |                          |         |  |  |  |

#### Query endpoint

Send request

Browser Curl Python SQL

```
Request 2
 {"dataframe_split": {"index": [0, 1, 2, 3, 4, 5,
 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 "columns": ["Store", "Date"], "data": [["1",
 "2015-01-30"], ["1", "2015-01-29"], ["1", "2015-
 01-28"], ["1", "2015-01-27"], ["1", "2015-01-
 26"], ["1", "2015-01-25"], ["1", "2015-01-24"],
 ["1", "2015-01-23"], ["1", "2015-01-22"], ["1",
 "2015-01-21"], ["1", "2015-01-20"], ["1", "2015-
 01-19"], ["1", "2015-01-18"], ["1", "2015-01-
 17"], ["1", "2015-01-16"], ["1", "2015-01-15"],
 ["1", "2015-01-14"], ["1", "2015-01-13"], ["1",
 01-10"], ["1", "2015-01-09"], ["1", "2015-01-
 08"], ["1", "2015-01-07"], ["1", "2015-01-06"],
 ["1", "2015-01-05"], ["1", "2015-01-04"], ["1",
 "2015-01-03"], ["1", "2015-01-02"], ["1", "2015-
```

#### Response from model\_wrapper\_serving\_fsa-6

```
"predictions": [
    (
        "Date": "2015-01-01T00:00:00",
        "Store": "1",
        "Sales_Pred": 3738.813755710591
    ),
    (
        "Date": "2015-01-02T00:00:00",
        "Store": "1",
        "Sales_Pred": 4142.608373035108
    ),
    (
        "Date": "2015-01-03T00:00:00",
        "Store": "1",
        "Sales_Pred": 5209.715878546838
    ),
    (
        "Date": "2015-01-04T00:00:00",
        "
```

DATA'AI SUMMIT

# Conclusions

What have we learned by doing?

- Feature Engineering Client and Online Tables from Databricks combined with Model Serving significantly simplifies features lookups and joints with a TimeStamp dependency on features updates.
- We can store various type of data under Online Tables, e.g serialized models for real-time calls.
- Feature Engineering Client and Online tables can be used across any project like Forecasting, Recommender Systems, GenAl Agents etc

# Warnings/Limitations

## Few tricks and tips to make it successful

**Fixed Container Memory** 

#### Limitation:

 4 Gb RAM for a CPU container

#### Solution:

- Will be lifted, if needed contact your Dbx team
- ➢ Use small GPU container
- Move into pure Online store solution

### **Online Store Str size**

- Limitation:
  - 65Kb of a string type per row
- Solution
  - Publish your serialized model as array(string)
  - ➤ Use smaller models
  - Compress your model

#### **MLOps**



- Limitation:
  - To update models under an artifact have to redeploy a model container



 Use pure Online Store solution with a TimeStamp Key on model updates